

Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, Pune – 16

End Semester Examination: March/April 2025 Faculty: Science and Technology

Program: BSc Gen03 Program (Specific):B.Sc.

Class: T.Y.B.Sc (Mathematics)

Name of the Course: Ring Theory

Course Code: 24-MT-363

Paper no.: III Time: 2Hrs

Instructions to the candidate:

1) There are 3 sections in the question paper. Write each section on separate page.

2) All sections are compulsory.

3) Figures to the right indicate full marks.

4) Draw a well labelled diagram wherever necessary.

SECTION: A

Q1) Solve any five of the following.

(10 Marks)

Semester: VI

Course Type: Core Max. Marks: 35

- a) Find all zeros of $x^3 + 2x + 2$ in \mathbb{Z}_7 .
- b) Show that the map $\phi : \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(x) = 3x$; $\forall x \in \mathbb{Z}$ is not a ring homomorphism.
- c) Give an example of finite commutative ring.
- d) In $\mathbb{Z}[i]$, show that 5 is not irreducible.
- e) Define a unit of a ring. Describe all units of \mathbb{Z} .
- f) Find the characteristic of the following rings:

i) **Z**5

ii) 3Z

g) Is $\{0\}$ a prime ideal of \mathbb{Z}_4 ? Justify.

SECTION: B

Q.2) Solve any three of the following.

(Marks 15)

- a) Find the quotient q(x) and remainder r(x) when $f(x) = x^4 3x^3 + 2x^2 + 4x 1$ is divided by $g(x) = x^2 2x + 3$ in $\mathbb{Z}_5[x]$.
- b) If p is an irreducible element in a Principal Ideal Domain D and p|ab for a, $b \in D$ then prove that either p|a or p|b.

- c) Show that $f(x) = 25x^5 9x^4 3x^2 12$ is an irreducible over \mathbb{Q} .
- d) Find all prime and maximal ideals in \mathbb{Z}_6 .
- e) Let $f(x) \in F[x]$ be a polynomial of degree 2 or 3 then prove that f(x) is reducible over F if and only if f(x) has zero in F, where F is a field.

SECTION: C

Q.3) Solve any one of the following.

(Marks 10)

- a) Prove that every PID is a UFD.
- b) i) Find σ and ρ in $\mathbb{Z}[i]$ such that $\alpha = \beta \sigma + \rho$ with $N(\rho) < N(\beta)$, where $\alpha = 7+2i$ and $\beta = 3-4i$ in $\mathbb{Z}[i]$.
 - ii) If R is a ring with unity 1 and $\emptyset : R \to R'$ is a ring homomorphism then prove that $\emptyset(1)$ is an unity in $\emptyset[R]$. If S is a subring of R then prove that $\emptyset[S]$ is a subring of R'.
